
Les exercices 1, 2, 3, 4, 6, 7, 9, 19 et 20 sont plus abordables que le reste. Les exercices 1,
7, 12, 21, 29, 32 et le problème 1 sont à traiter en priorité. J’insiste tout particulièrement sur
l’exercice 12.

1 Développements limités

Exercice 1 : Développements limités à l’ordre 1

Effectuer les développements limités suivants à l’ordre 1 (au voisinage de 0 sauf précision
du contraire) :

1. 1
1+x

2. 1
z au voisinage de a ̸= 0 fixé

3. cos(θ) au voisinage de θeq

4. ex
2 au voisinage de 1

5. eu au voisinage de u0.

6. 1
(1+x)3/2

7. 1
z4

au voisinage de a

8. 1√
1+x

9.
√
1 + x au voisinage de 2

Exercice 2 : Solution approchée

On cherche à résoudre l’équation transcendentale suivante :

k
cos(x)

1− x2
= x

en x, avec k = 0.1. Quelle hypothèse est-il alors naturel de faire sur l’ordre de grandeur
de x ? En déduire une solution approchée de l’équation. Comparer le résultat avec une
solution obtenue par une méthode numérique.
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Physicité L’oscillateur harmonique (exercices)

Exercice 3 : Pression dans une salle

1. Estimer la hauteur typique h d’une salle de classe. Estimer également la température
typique T d’une salle de classe (attention à bien utiliser des unités SI).

Si on fait l’hypothèse que l’air est un gaz parfait et que la température est constante
en fonction de la position, la pression à une hauteur z du sol vaut :

P (z) = P0 exp

(
−Mgz

RT

)
Avec M = 29gmol−1, la masse molaire de l’air, et P0 = 1013hPa

2. On pose H = RT
Mg . Montrer que H est homogène à une hauteur, et calculer sa valeur.

En déduire une expression approchée de P (z)− P0.

3. Quelle erreur relative fait-on en considérant que la pression est uniforme dans une
salle de classe ?

Exercice 4 : Champ de gravité terrestre

À quelle hauteur doit-on se placer pour que l’intensité du champ de gravité terrestre ait
varié d’un pourcent par rapport à sa valeur au niveau du sol ?

Exercice 5 : Point de Lagrange

3 des 5 points de Lagrange du système Terre-Soleil sont situés sur l’axe Terre Soleil. On
cherche donc des points sur cet axe tels que la somme des forces gravitationnelles et
d’inertiel s’annule ; on obtient alors l’équation suivante sur d la distance Soleil-point de
Lagrange :

0 = −GMSm

d2
+

GMTm

(D − d)2
+mΩ2d

où D est la distance Terre-Soleil et Ω2 = GMS
D3

1. En déduire une relation uniquement entre les paramètres adimensionnés α =
MT /MS et x = d/D.

2. Numériquement on trouve x = 0.989. Quelle approximation peut-on donc raisonna-
blement faire ? En déduire une expression théorique approchée de x.
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Physicité L’oscillateur harmonique (exercices)

2 L’oscillateur harmonique en mécanique

Exercice 6 : Le système masse ressort

1. On considère une masse m reliée à un ressort de raideur k et de longueur à vide l0,
se déplaçant sans frottements sur une table :

m

l0 + x
l0

On repère sa position par la variable x. Déterminer l’équation différentielle du
mouvement, la résoudre dans le cas x(t = 0) = 0, ẋ(t = 0) = v0.

2. On suspend cette fois cette masse au plafond, elle est donc à la verticale :

m

l0 + z

l0
g⃗

Établir l’équation différentielle du mouvement, la résoudre dans le cas
z(t = 0) = z0 +

mg
k , ż(t = 0) = 0.

3. On place cette fois la masse et le ressort sur un plan incliné d’un angle α par
rapport à l’horizontale.

Ox

m g⃗

α

Établir l’équation différentielle du mouvement, et la résoudre dans le cas x(t = 0) =
l0, ẋ(t = 0) = 0.
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Physicité L’oscillateur harmonique (exercices)

Exercice 7 : Ressorts équivalents

1. On considère deux ressorts de longueur à vide l0 et de raideurs respectives k1 et
k2. On suppose qu’ils sont associés en parallèle et attachés tous deux à un même
solide de masse M .

M

k1 k2

Montrer que ces deux ressorts sont équivalents à un seul ressort de longueur à
vide l0 de raideur keq = k1 + k2. En déduire une formule pour calculer la raideur
équivalente pour un ensemble de n ressorts en parallèle de raideurs respectives
k1, k2, . . . , kn et de longueur à vide l0.

2. On suppose désormais que ces deux ressorts sont associés en série, c’est-à-dire
attachés les uns à la suite des autres, on suppose que l’attache est de masse nulle,
et on prend désormais les longueurs à vide des deux ressorts, l1 et l2 différentes.

M

k1

k2

Montrer que ces deux ressorts sont équivalents à un seul ressort de longueur à

vide l0 = l01 + l02 et de raideur
1

keq
=

1

k1
+

1

k2
. En déduire une formule pour calculer

la raideur équivalente et la longueur à vide équivalente pour un ensemble de n
ressorts en parallèle de raideurs respectives k1, k2, . . . , kn et de longueurs à vide
l1, l2, . . . ln.

Ces deux résultats sont à connaître.
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Physicité L’oscillateur harmonique (exercices)

Exercice 8 : Élastique coupé en deux (tiré du test de présélection des IPhOs 2006)

Un élastique (boucle en caoutchouc) est assimilé à un ressort. Il possède une constante
de raideur k qui vaut 10Nm−1. On coupe la boucle. Quelle est la constante de raideur du
nouvel objet ?

1. 20Nm−1

2. 5Nm−1

3. 2.5Nm−1

4. 10Nm−1

Exercice 9 : Ressorts et gravité

Une masse m est astreinte à se déplacer verticalement entre 2 plans distants de 2L. Elle
est reliée à deux ressorts de constante de raideur k et de longueur à vide l0.

m

g⃗

z

1. Établir l’équation différentielle du mouvement.

2. En déduire la position d’équilibre zeq.

3. Réécrire l’équation vérifiée par z, uniquement à l’aide z̈, z, zeq et ω0 la pulsation
propre du système.

4. La résoudre en supposant qu’à t = 0, z et ż sont nuls.
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Physicité L’oscillateur harmonique (exercices)

Exercice 10 : Bille sur une tige en rotation

Une tige rectiligne tourne dans le plan de l’horizontale à vitesse angulaire constante ω.
Une bille de masse m est fixée dessus et peut y coulisser librement sans frottements.
Elle est liée à l’origine de la tige par un ressort de longueur à vide l0 et de constante de
raideur k.

O

m

ω

1. Quel système de coordonnées semble être le plus adapté ?

2. Établir l’équation différentielle du mouvement. Montrer que deux régimes sont
possibles, et les caractériser par une condition sur les paramètres du système.

3. Résoudre l’équation différentielle du mouvement dans les deux régimes pour une
situation initiale où la bille a une vitesse v0 le long de la tige, et part d’une distance
l0 de l’origine de la tige.

Exercice 11 : Ressort et pince (tiré du test de présélection des IPhOs 2015)

On considère deux corps de même masse, reliés par un ressort idéal de raideur k. Le
corps 1 est initialement tenu immobile par une pince et le corps 2 est en équilibre à
la verticale du corps 1. On écarte brusquement les bras de la pince. Quelles sont les
normes des accélérations respectives a1 et a2 des deux corps juste après avoir écarté
les deux bras de la pince ?

1. a1 = a2 = g

2. a1 = g, a2 = 0

3. a1 = 2g, a2 = 0

4. a1 = 2g, a2 = g
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Physicité L’oscillateur harmonique (exercices)

Exercice 12 : Oscillateurs harmoniques couplés

Cet exercice demande d’avoir lu le début du bonus 5.1.1 sur la résolution d’un système
d’équations différentielles d’ordre 1 à couplage symétrique.

Soient deux murs se faisant face, distants de 3l0. Soient deux mobiles M1 et M2, de
même masse m. M1 est fixé au premier mur par un ressort de constante de raideur k et
de longueur à vide l0. M2 est fixé au deuxième mur de la même manière. Entre M1 et
M2 on place un troisème ressort, de constante de raideur k′ et de longueur à vide l0. On
repère la position des mobiles par leur abscisse x, qui correspond à leur distance au
premier mur.

1. Faire un schéma. Que valent x1eq et x2eq ?

2. Établir les équations différentielles couplées sur x1 et x2. Faire apparaître ω0 la
pulsation de résonance des oscillateurs découplés.

3. Découpler ces équations en introduisant de nouvelles variables bien choisies. On
fera apparaître une nouvelle pulsation, ω1.

4. Résoudre ces équations dans le cas où l’on lache M1 et M2 depuis les positions
immobiles x1 = l0 + a et x2 = 2l0 + a, et tracer les solutions. Justifier qu’on puisse
appeller ces solutions le mode symétrique du système.

5. Résoudre ces équations dans le cas où on lache M1 et M2 depuis les positions
immobiles x1 = l0 + a et x2 = 2l0 − a et tracer les solutions. Justifier qu’on puisse
appeler ces solutions le mode anti-symétrique du système, et justifier pourquoi
ω1 > ω0.

6. Résoudre ces équations dans le cas où on lache M1 et M2 depuis les positions
immobiles x1 = l0 + a et x2 = 2l0. On suppose que k′ ≪ k. On donne les formules
cos(p) + cos(q) = 2 cos

(
p+q
2

)
cos

(
p−q
2

)
et cos(p) − cos(q) = −2 sin

(
p+q
2

)
sin

(
p−q
2

)
. Quel

phénomène voit-on apparaître ? À quelle fréquence ?

https ://www.youtube.com/watch?v=YyOUJUOUvso pour une illustration des 3
régimes.
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Physicité L’oscillateur harmonique (exercices)

Exercice 13 : Battements (tiré du test de préselection des IPhOs 2015)

Il est très vivement recommandé de faire cet exercice en utilisant la partie 4.1 du
cours sur les oscillateurs couplés, ce qui simplifiera grandement les calculs. C’est
absolument crucial, car le QCM requiert de la rapidité et de l’efficacité. Pour la même
raison, il est fortement déconseillé d’utiliser directement les résultats des calculs de
l’exercice précédent, car en conditions réelles vous n’aurez pas le temps de tout poser
aussi exhaustivement. On considère deux points matériels de masse m oscillant sans
frottement sur un axe horizontal, les points étant reliés respectivement à des parois
fixes par des ressorts idéaux de raideur k et entre eux par un ressort de raideur k′ ≪ k.

m m

k k′ k

Lorsqu’on observe des battements, que peut-on dire de leur fréquence ?

1. f = 1
2π

k′

k

√
k
m

2. f = 1
4π

k′

k

√
k
m

3. f = 1
2π

k
k′

√
k
m

4. f = 1
4π

k
k′

√
k
m

Exercice 14 : Pendules couplés (tiré du test de présélection des IPhOs 2017)

Deux pendules de masse m et de longueur h sont attachés par un ressort de raideur
K et de longueur à vide l0. La distance entre les deux masses est initialement de l0.
Quelle est la seule expression possible, pour la fréquence du mode propre de plus haute
fréquence ?

1.
√

2g
h + 2K

m

2.
√

g
h + 2K

m

3.
√

2K
m

4.
√

K
2m
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Physicité L’oscillateur harmonique (exercices)

Exercice 15 : Ressorts et rotation (tiré du test de présélection des IPhOs 2025)

On met en rotation une boite de longueur 3l, autour d’un axe noté (Oz), porté par l’un de
ses côtés. La vitesse angulaire de rotation ω est supposée constante. À l’intérieur de cette
boite, on place un bloc de masse m dont on suppose les dimensions caractéristiques
négligeables devant l. Ce dernier est relié aux parois par deux ressorts supposés idéaux et
sans masse. Sur le schéma ci-dessous, on indique les longueurs à vide et les constantes
de raideur de ces deux ressorts. On néglige ici tout type de frottements.

On fait l’hypothèse que le bloc reste à une distance constante r de l’axe de rotation,
sans être en contact avec l’un ou l’autre des murs. Quelle est la valeur de r ?

1.
2kl

2k −mω2
;

2.
2kl

2k +mω2
;

3.
3kl

3k +mω2
;

4.
3kl

3k −mω2
;
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Physicité L’oscillateur harmonique (exercices)

Exercice 16 : Ressort et mouvement relatif (tiré du test de présélection des IPhOs 2024)

Une masse m est accrochée verticalement à un support en O par un fil de longueur
d, dans le champ de pesanteur terrestre g. À cette masse est accroché un ressort de
raideur k et de longueur à vide l0, au bout duquel est accrochée une deuxième masse m.
Le système étant initialement à l’équilibre, on coupe le fil juste au dessus de la première
masse à l’instant t = 0. Comment évolue la longueur du ressort lors de la chute ?

1. l(t) = l0 +
k

mg
cos(ωt)

2. l(t) = l0 +
mg

k
cos(ωt)

3. l(t) = l0 −
k

mg
cos(ωt)

4. l(t) = l0 −
mg

k
cos(ωt)
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Physicité L’oscillateur harmonique (exercices)

Exercice 17 : Oscillateur à deux ressorts (tiré du test de présélection des IPhOs 2024)

Une masselotte M (de masse m) assimilée à un point matériel est accrochée entre deux
ressorts (de constantes de raideur ki et de longueurs à vide l0i avec i = 1 ou 2) fixés à leurs
extrémités aux bâtis en O et O′ sur le support. Le mouvement de la masselotte est consi-
déré horizontal et sans frottement. Quelle est la pulsation d’oscillation de ce système?

1. ω =

√
k1
m

2. ω =

√
1

m

k1l01 + k2l02
l01 + l02

3. ω =

√
1

m

k1 × k2
k1 + k2

4. ω =

√
k1 + k2

m

Problème 1 : excitation de monoxyde de carbone dans l’air ambiant (tiré
du problème 1 du test de présélection des IPhOs 2022, et de l’exercice 1
du test de présélection des IPhOs 2018)

Le monoxyde de carbone CO est un gaz toxique. Il est nocif même à des concentrations
très faibles : 30 minutes d’exposition à 0, 32% de monoxyde de carbone dans l’air provoque un
décès. Il est donc utile de mesurer sa concentration dans l’air avec une grande sensibilité : la
méthode de détection de gaz par spectroscopie photoacoustique répond à cette exigence.

C O

On note r⃗C (respectivement r⃗O) le vecteur position du centre de masse de l’atome de

carbone (respectivement de l’atome d’oxygène). On note r⃗G =
mC r⃗C +mOr⃗O

mC +mO
la position du

centre de masse de la molécule. On note r⃗ = r⃗C − r⃗O. Les deux atomes sont liés par une énergie
potentielle d’interaction U(r) = U(∥r⃗∥) de la forme suivante :
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Physicité L’oscillateur harmonique (exercices)

r

U(r)

Si vous n’arrivez pas à faire les deux premières questions, ce n’est pas grave, admettez
les résultats et passez aux questions suivantes (elles ne sont pas dans le sujet original, les
résultats y sont admis).

Données nécessaires à la résolution de ce problème :
Constante de Planck : h = 6, 63× 10−34J s

Célérité de la lumière dans le vide : c = 3, 00× 108ms−1

Nombre d’Avogadro : NA = 6, 02× 1023mol−1

Masses molaires d’éléments : carbone M(C) = 12, 0gmol−1 ; oxygène M(O) = 16, 0gmol−1

1. Montrer que ˙⃗rG est constant. On change donc de référentiel, pour prendre celui où le
centre de masse de la molécule est immobile. Justifier que ce nouveau référentiel est
galiléen.

2. Montrer que tout se passe comme si une particule de masse µ =
mCmO

mC +m0
et de position

r⃗ subissait la force exercée par O sur C.
3. Montrer que, tant qu’on s’intéresse à une vibration de petite amplitude au voisinage de la

distance moléculaire d’équilibre, on peut assimiler la liaison chimique C-O à un «ressort»
de raideur k = d2U

dr2
(r = req) et de longueur au repos l0 = req. Quel est alors le mouvement

de la particule fictive discutée à la question 2, si on suppose qu’il n’y a aucune rotation ?

Montrer que la distance entre les deux atomes oscille à la pulsation ω0 =

√
k

µ
.

4. Déterminer la valeur numérique de la masse réduite µ.

L’élongation de la molécule CO par rapport à sa situation d’équilibre est notée x(t) . Elle
est sinusoïdale, de la forme :

x(t) = xm cos(ω0t)

avec xm l’amplitude de l’élongation de la molécule CO.
5. Déterminer les expressions de l’énergie cinétique Ec =

1
2µv

2 et de l’énergie potentielle
élastique Ep =

1
2kx

2 , en fonction de µ , ω0 , xm et t . En déduire l’expression de l’énergie
mécanique Em en fonction de µ , ω0 et xm .

Les vibrations de la molécule sont en fait régies par la mécanique quantique et l’énergie
mécanique de vibration est quantifiée. Les niveaux d’énergie de vibration de l’oscillateur
harmonique quantique sont de la forme :

En =
hω0

2π

(
n+

1

2

)
Avec h la constante de Planck, ω0 la pulsation propre de l’oscillateur harmonique classique
et n ∈ N.
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Physicité L’oscillateur harmonique (exercices)

Le laser permettant d’exciter la molécule CO dans le cadre de la spectroscopie pho-
toacoustique fait passer la molécule du niveau d’énergie de vibration n = 0 au niveau
d’énergie de vibration n = 1. Sa longueur d’onde est λ = 4, 664µm.

6. Dans quel domaine du spectre électromagnétique émet ce laser ?

7. Déterminer l’expression de l’écart d’énergie entre les niveaux de vibration n = 0 et n = 1
en fonction de h, c et λ. Faire l’application numérique.

8. En déduire la fréquence propre de vibration f0 de la molécule. Faire l’application numé-
rique.

9. Calculer la constante de raideur k du ressort équivalent à la liaison C - O dans le monoxyde
de carbone.

En utilisant le même raisonnement, on peut estimer la constante de raideur k du ressort
qui modélise la liaison pour d’autres molécules diatomiques :

Molécule Constante de raideur (Nm−1)
F2 4.4× 102

O2 1.1× 103

N2 2.2× 103

10. À quelle caractéristique de la liaison peut être qualitativement liée cette constante de
raideur ?

11. Les niveaux d’énergie de vibration peuvent être associés à l’énergie mécanique de la
molécule au sens de la mécanique classique (exprimée à la question 5). Quelle est
l’amplitude xm de l’élongation de la molécule lorsque celle-ci est dans son niveau de
vibration n = 1 ? Commenter la valeur obtenue, sachant que la longueur de la liaison C -
O dans le monoxyde de carbone est l0 = 112, 8pm.

Exercice 18 : Ressort massif sur une sphère (tiré d’un oral X MP 2019)

Un élastique circulaire de masse M , de longueur au repos l0 et de raideur k est placé
autour d’une boule de billard de rayon R, à l’horizontale. Il peut glisser sans frottements
sur la boule, tout en restant à l’horizontale.

g⃗
R

Déterminer les positions d’équilibre du ressort, et discuter leur stabilité.
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Physicité L’oscillateur harmonique (exercices)

Exercice 19 : Quasi-ressort

On suppose qu’une masse m est soumise à une force de la forme F (x) = −mω2
1(x−a4/x3)

dans la région x > 0 .

1. Déterminer la position d’équilibre du système.

2. Discuter sa stabilité, et donner, si elle est stable, la pulsation propre associée.

Exercice 20 : Pendule simple

Il faut bien savoir le faire. On considère une masse m au bout d’un fil de longueur l.

z

O

l

m

θ

g⃗

1. Établir l’équation différentielle du mouvement.

2. En déduire les positions d’équilibre.

3. Discuter leur stabilité.

4. Déterminer la pulsation propre pour la (les) position(s) stable(s).
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Exercice 21 : Formule de Borda

On étudie le mouvement d’un pendule simple de longueur l, de masse m.

1. Déterminer (ou rappeler) l’équation différentielle (1) vérifiée par l’angle θ(t).

2. La résoudre pour de petites oscillations et en déduire (ou rappeler) la pulsation
ω0 puis la période T0 du mouvement dans ce cas. A-t-on affaire à un oscillateur
harmonique ? Pour une amplitude plus importante, on utilise : sin(θ) = θ − θ3

6 (le DL
de sinus à l’ordre 3 en 0). On cherche une solution à l’équation (1) en θ(t) = θ0 cos(ωt)
avec ω quelconque a priori.

Donnée : cos3(x) = (3 cos(x) + cos(3x))/4

3. Exprimer ω en fonction de ω0 et θ0. On admet que si α ̸= β, et que pour tout t,
a cos(αt)+ b cos(βt) = a′ cos(αt)+ b′ cos(βt), alors a = a′ et b = b′. En déduire qu’à l’ordre
2 en θ0,

T = T0

(
1 +

θ20
16

)
En déduire que l’approximation d’oscillateur harmonique pour le pendule simple
est particulièrement efficace.

4. Tracer sur un même graphique l’énergie potentielle réelle dont dérive le poids et
l’énergie potentielle parabolisée dont dérive le poids linéarisé utilisé à la question
2. Expliquer physiquement la monotonie de T avec θ0.

Exercice 22 : Pendule accéléré

Un pendule de massem et de longueur l est dans un camion. Ce camion a une accélération
constante a vers la droite. Déterminer la position angulaire d’équilibre du pendule et la
pulsation des petites oscillations.

O O′

θa

M
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Exercice 23 : Bille sur un anneau en rotation

Une bille P de masse m coulisse sans frottements sur un cercle de centre O et de rayon
R. Le cercle tourne à la vitesse Ω autour de l’axe fixe (Oz). On repère par l’angle θ la
position de la masse m. On admet que, dans le référentiel de l’anneau (dans lequel
l’anneau est immobile, donc tournant à la pulsation Ω), tout se passe comme dans un
référentiel galiléen à ceci près qu’une force d’inertie F⃗ie = mΩ2−−→HP s’applique sur P .

O

z

P

θ

Ω

H

g⃗

R

1. Quel est le système de coordonnées le plus adapté ?

2. Donner l’équation du mouvement.

3. En déduire les positions d’équilibre. Définir une pulsation critique Ωc, puis rassem-
bler le tout sur un graphe θeq = f(Ω).

4. Déterminer si les positions d’équilibre sont stables ou non. Rapporter vos résultats
sur le graphe. Pourquoi peut-on parler de bifurcation ?

Exercice 24 : Énergie, force, équilibre et stabilité (tiré du test de présélection des IPhOs 2010)

Deux particules distantes de x, sont en interaction. Elles interagissent selon une force
F et le potentiel associé U , dont les profils en fonction de x sont les suivants : Quelle
situation correspond à la position d’équilibre ?

r

F

x1
x2

x3
x4

r

U

1. x1 = x3

2. x1 = x4

3. x2 = x3

4. x2 = x4
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Exercice 25 : Énergie et stabilité (tiré du test de présélection des IPhOs 2011)

Deux particules distantes de r intéragissent selon un champ de force dont le potentiel a
l’allure suivante U(r). Que peut-on en déduire ?

x

U

1. Il n’existe pas de position d’équilibre.

2. L’équilibre n’est possible qu’en r = 0.

3. Il y a une position d’équilibre stable non nulle.

4. Il y a une position d’équilibre instable non nulle.

Exercice 26 : Force centrale (tiré d’un oral ENS LSR MP 2023)

On considère une particule de masse m soumis à une force :

F⃗ = − k

rn
u⃗r

Avec n ∈ R, O fixe dans un référentiel galiléen et u⃗r =
−−→
OM∥∥∥−−→OM

∥∥∥ . On admet que le mouvement

est plan (il se fait dans un plan, donc n’est pas un mouvement tridimensionnel).

1. Quel système de coordonnées est le plus adapté ?

2. Donner une condition sur r0 et θ̇0, les conditions initiales sur r et θ, pour que le
mouvement soit circulaire.

3. On pose r = r0 + δr, avec δr ≪ r0. Établir l’équation différentielle sur δr. Il est pour
cela nécessaire d’utiliser les deux équations données par le PFD. On donne la
formule :

1

r

d

dt
(r2θ̇) = 2ṙθ̇ + rθ̈

4. Conclure quant-à la stabilité de l’orbite circulaire en fonction de n.

5. On choisit cette fois :
F⃗ = − k

r2
exp(−ar)u⃗r

Mêmes questions, orbite circulaire et stabilité.

Vous verrez, dans le cours de mécanique céleste, un moyen beaucoup plus efficace de
répondre aux questions de stabilité : l’énergie potentielle effective.
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Exercice 27 : Palet flottant

On considère un cube de côté a et de masse volumique ρ < ρeau flottant à la surface
de l’eau. On rappelle le fonctionnement de la poussée d’Archimède : à l’équilibre dans
un fluide, tout corps immergé subit une opposée au poids de fluide déplacé. Décrire le
mouvement du cube en faisant des hypothèses judicieuses et discuter quantitativement
leur validité.

Exercice 28 : Grains de sable dans un cylindre (tiré de Problems on mechanics de Jaan Kalda)

On considère un cylindre de longueur L et de rayon R, incliné d’un angle α par rapport à
l’horizontale.

— Version brutale : Si vous voulez traiter l’exo tel qu’il est posé, ne lisez pas la version
où l’on a rajouté des questions intermédiaires. Si vous n’y arrivez pas, n’hésitez
surtout pas à regarder la deuxième version.

De petits grains de sable glissent sans frottements le long de ce cylindre. Tous
les grains ont une vitesse initiale nulle et démarrent proche du point A (mais pas
nécessairement au point A exactement). Quelle devrait être la longueur de la rigole
pour que tous les grains sortent du cylindre au point B (i.e. exactement en bas de
la rigole).

— Version aidée : Une bille peut glisser sans frottements à l’intérieur du cylindre. On
la pose tout en haut du cylindre, pas nécessairement en A mais sur le cercle de
base du cylindre qui passe par A.

1. Quel système de coordonnées semble être le plus adapté ?
2. En déduire les équations du mouvement.
3. Résoudre les équations du mouvement pour une position initiale proche de A.
4. On pose, proche de A, une grande quantité de grains de sable. Donner une

condition sur L pour que tous les grains de sable sortent du cylindre exactement
au point B.
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Exercice 29 : L’oscillateur harmonique amorti (tiré du test de présélection des IPhOs 2016)

Une guimbarde est un instrument de musique constitué d’une lame de métal que le
musicien fait vibrer devant sa bouche ouverte. La figure suivante est l’enregistrement
du son produit par la guimbarde, de fréquence 200 Hz. Quel est approximativement le
facteur de qualité du système?

1. 125

2. 1000

3. 10

4. 500

Problème 2 : ondes sonores dans un cristal monoatomique

On se propose d’étudier quelques propriétés physiques des cristaux monoatomiques. Au
niveau microscopique, on utilise le modèle simplifié de la chaîne d’atomes monodimen-
sionnelle. On appelle m la masse de l’atome, a la distance entre deux atomes successifs
lorsque ceux-ci sont en équilibre ; l’interaction entre deux atomes successifs schématisée
par des "ressorts" est traduite par une énergie potentielle d’interaction. Au niveau macrosco-
pique, le cristal est un milieu continu de section S, de longueur L et de masse volumique µ.

1. Étude statique
(i) Écrire pour chacun des modèles la masse par unité de longueur et en déduire que

m

a
= µS.

(ii) L’extrémité de gauche étant fixée dans chacun des modèles, on exerce sur l’extrémité
de droite une force d’étirement d’intensité F .

On admet que chacun des ressorts est allongé d’une même quantité notée u si le
poids de chaque atome est négligeable devant les forces d’interaction qui s’exercent
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entre deux atomes successifs. A partir d’un développement limité de l’énergie
d’interaction Ep(a + u), montrer qu’en première approximation F = Ku. Comment
appelle t’on ce type de force ?

(iii) Au niveau macroscopique, la version continue de la force d’un ressort est donnée
par la loi de Hooke qui relie force et allongement pour des petites déformations d’un
solide :

F

S
= E

δL

L

Avec E le module d’Young. Quelle est, dans le système international, l’unité de E ?
Montrer que :

u

a
=

δL

L

K

m
=

E

µa2

A.N. : Calculer K et
√

K

m
pour E = 2 × 1011Pa, µ = 8 × 103kgm−3, m = 9 × 10−26kg et

a = 3× 10−10m (valeurs typiques pour l’acier). Commenter.

2. Étude dynamique

Lorsque la chaîne est en mouvement longitudinal, chaque atome est repéré par son
déplacement un(t) par rapport à sa position au repos xn = na où n entier repère le nieme
atome de la chaîne. Chaque ressort exerce une force de rappel proportionnelle à son
allongement par rapport à sa longueur a au repos (K : coefficient de proportionnalité).
Sur le schéma, un−1 est négatif, et un et un+1 sont positifs.

(n− 1)a na (n+ 1)a

repos

mouvement

un−1 un un+1

(i) Montrer que l’équation du mouvement pour les atomes de la chaîne s’écrit :

m
d2un
dt2

= −K(2un − un+1 − un−1)

(ii) On cherche une solution sous forme d’onde progressive harmonique un = u0 sin(ωt− kna)
où un représente l’élongation, au temps t que prendrait une onde d’amplitude u0, de
pulsation ω et de vecteur d’onde k (k = 2π

λ ), aux points xn où se trouvent les masses
dans la chaîne au repos. On donne les formules sin(p)− sin(q) = 2 sin

(
p−q
2

)
cos

(
p+q
2

)
et cos(p)− cos(q) = −2 sin

(
p+q
2

)
sin

(
p−q
2

)
. Montrer que cette solution est possible si :

ω = 2

√
K

m
sin

(ka
2

)
quand sin

(
ka
2

)
⩾ 0, et que les k tels que sin

(
ka
2

)
< 0 sont interdits.

20/28



Physicité L’oscillateur harmonique (exercices)

(iii) Représenter la courbe ω = f(k). Montrer que le mouvement des atomes est inchangé
si k est remplacé par k + 2pπ/a (p entier positif) ; commenter. Montrer que pour les
grandes longueurs d’onde :

ω

k
≈ a

√
K

m

Que se passe-t-il pour des pulsations ω > 2
√
K/m ?

(iv) Si l’une des masses est remplacée par une masse m′ ≪ m, estimer les changements
majeurs attendus sur la distribution en position.

(v) Décrire qualitativement la forme du spectre en fréquence prévisible pour une chaîne
diatomique composée alternativement de masses m et m′.

3 L’oscillateur harmonique partout ailleurs

Exercice 30 : Encore de l’optique (tiré de T2-IPhOs 2015)

Un faisceau laser rentre horizontalement dans une cuve contenant une solution de sucre.
Cependant à cause de la décantation, la concentration de sucre diminue avec la hauteur
dans la cuve. L’indice optique de la solution décroît donc aussi avec l’altitude.

y

x

(0, 0)

(x0,−y0)

θ

On suppose que l’indice n ne dépend que de y.

1. Montrer, par un raisonnement infinitésimal, que n(y) sin(θ(y)) = n0, avec θ(y) l’angle
d’incidence du rayon le long de sa trajectoire, et n0 l’indice de réfraction du milieu
au point d’entrée du laser.

2. Exprimer la pente
dy

dx
en un point du rayon lumineux en fonction de n(y) et de n0.

3. En considérant que n(y) = n0 − ky, avec k ⩾ 0, exprimer x en fonction de y.

4. En déduire x0 le point où le laser atteint le fond de la cuve.

On donne la fonction réciproque de cosinus hyperbolique sur R+ :

argcosh(t) = ln
(
t+

√
t2 − 1

)
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Exercice 31 : Principe d’un pH-mètre

On considère une électrode plane au potentiel V0 > 0, plongée dans une solution ionique
infinie dans laquelle on trouve des cations de charge Ze et des anions de charge −Ze,
avec un nombre d’ions par unité de volume en l’abscence d’électrode n0 chacun (pour
assurer la neutralité de la solution). On va montrer que la présence de l’électrode va
créer une accumulation de charges négatives proche de cette dernière.

O x

V (x)

L’écriture du théorème de Gauss (ou de l’équation de Maxwell-Gauss, voire même de
l’équation de Poisson) ainsi que de la statistique de Maxwell-Bolztmann permet de
trouver l’équation différentielle suivante sur V , le potentiel électrique dans la solution
en fonction de la position :

d2V

dx2
=

Zen0

ε0
sinh

(ZeV (x)

kBT

)
Où sinh(t) =

et − e−t

2
1. Linéariser cette équation à haute température, et donner une condition sur T pour

que cette approximation soit valable.

2. En déduire V (x), en utilisant un argument physique pour palier à l’abscence d’une
deuxième condition initiale, sachant que E⃗ = −dV

dx u⃗x et que l’énergie électrostatique
volumique vaut w = ε0E2

2 . Mettre en évidence une distance typique d de variation de
V .

3. À quelle condition peut-on considérer le milieu comme infini ? Faire l’applica-
tion numérique pour une solution de 100mL d’acide chlorhydrique à 0.1mol L−1.
Commenter.
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Exercice 32 : De la thermodynamique? ! L’expérience de Rüchardt

Une des constantes les plus importantes pour un gaz parfait est son coefficient de
Laplace, noté γ. Il intervient dans les capacités thermiques à volume constant et à
pression constante du gaz considéré, et apparaît dans la loi de Laplace :

PV γ = cste

qui est valide dans le cas où ce gaz parfait subit une transformation isentropique,
ou plus spécifiquement une transformation adiabatique réversible ; c’est-à-dire une
transformation sans transfert thermique, et suffisamment lente pour que l’on puisse
considérer que l’équilibre est atteint à tout instant. L’expérience de Rüchardt a pour but
de mesurer γ.

On considère une enceinte calorifugée de volume V0, dans laquelle on a mis un gaz
parfait de coefficient de Laplace γ, de température T0, à la pression P0. L’embouchure
de l’enceinte, de section S, est fermée par un piston, lui aussi calorifugé, de masse m,
qui peut glisser sans frottements le long de l’embouchure.

x

On repère sa position par la coordonnée x, telle que si x = 0, V = V0.

1. Déterminer P0 en fonction de la pression atmosphérique.

2. On appuie légèrement sur le piston, lui donnant une vitesse ẋ(t = 0) = −v0, tandis
que le piston part de x = 0. On suppose la transformation adiabatique (car tout
est calorifugé) et réversible (ce qui est valable pour v0 suffisamment petit). Établir
l’équation différentielle de mouvement. Quelle hypothèse peut-on faire sur x ?
Proposer une méthode de mesure de γ.

Voici un lien de l’expérience de Rüchardt faite avec de l’air :
https ://www.youtube.com/watch ?v=vT6n7VVBvqw

On peut montrer que l’atténuation n’est pas majoritairement dûe à des frottements
solides ou fluides, mais à des transferts thermiques.
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Exercice 33 : De l’électrocinétique? ! L’autre exercice sur l’oscillateur harmonique amorti

Cet exercice demande d’avoir lu le début du bonus 5.1.1 sur la résolution d’un système
d’équations différentielles d’ordre 1 à couplage symétrique.

On considère le circuit électrique suivant :

E

R

C

q1

C

q2

R

K

L

i

Les deux condensateurs sont initialement déchargés. On allume alors la source de tension
E. On laisse l’interrupteur K ouvert jusqu’à l’instauration d’un régime stationnaire. À
t = 0, on ferme le circuit. On s’intéresse à l’évolution des charges q1 et q2 au cours du
temps. On donne E = 1V C = 10−6F, R = 2× 102Ω, L = 5× 10−3H.

Cette installation conduit aux conditions initiales :
q1(t = 0+) = q2(t = 0+) =

CE

2(dq1
dt

)
t=0+

= −
(dq2
dt

)
t=0+

=
E

2R

Ainsi qu’aux équations différentielles couplées :
d2q1
dt2

−d2q2
dt2

+
R

L

dq1
dt

+
1

LC
q1 =

E

L
d2q2
dt2

−d2q1
dt2

+
R

L

dq2
dt

+
1

LC
q2 = 0

Résoudre ces équations. On introduira une pulsation propre et un facteur de qualité,
que l’on calculera.

24/28



Physicité L’oscillateur harmonique (exercices)

Exercice 34 : De la mécanique quantique? Le puits de potentiel infini

On conisdère une particule de masse m, à une dimension, mise dans une énergie
potentielle :

V (x) =

{
0 si x ∈ [0, L]

+∞ sinon

L’équation qui régit la fonction d’onde stationnaire d’énergie E est l’équation aux valeurs
propres suivante :

− ℏ2

2m

d2φ

dx2
+ V (x)φ(x) = Eφ(x)

Avec ℏ = h
2π . Elle ne peut être uniformément nulle, car cela voudrait dire que la particule

n’est nulle part.

1. Justifier que la particule est confinée dans [0, L], et qu’elle s’annule en 0 et en L.

2. Résoudre l’équation différentielle sur φ.

3. Utiliser les conditions aux bords pour montrer que E ne peut être négatif ou nul.

4. Utiliser les conditions aux bords pour montrer que l’énergie est quantifiée et ne
peut prendre que les valeurs :

En =
ℏ2π2n2

2mL2

5. Retrouver ce résultat en utilisant un raisonnement purement ondulatoire.

Le raisonnement ondulatoire est à savoir refaire.

Problème 3 : Eau et objets (tiré de Q3-IPhOs 2023)

3.1 Une plaque positionnée verticalement

Une plaque plane est immergée verticalement dans l’eau. Les figures 1(a) et 1(b) montrent
respectivement les formes de la surface de l’eau pour des plaques hydrophile (attraction
entre son matériau et l’eau) et hydrophobe (répulsion entre son matériau et l’eau). On néglige
l’épaisseur de la plaque.

La surface de la plaque est dans le plan yz et la surface horizontale de l’eau loin de la
plaque est dans le plan xy (i.e. z = 0). La forme de la surface ne dépend pas de la coordonnée
y. Soit θ(x) l’angle entre la surface de l’eau et le plan horizontal en un point (x, z) de la surface
de l’eau dans le plan xz. Cet angle θ(x) est mesuré par rapport à l’axe des x et d’orientation
positive dans le sens trigonométrique ; il vaut θ0 au point de contact entre la plaque et la
surface de l’eau (x = 0). Dans la suite, θ0 est fixé par les propriétés du matériau de la plaque.
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Figure 1 – Plaques immergées verticalement dans l’eau. (a) cas d’une plaque hydrophile ; (b)
cas d’une plaque hydrophobe.

On introduit la tension de surface, une force qui intervient lorsqu’une interface entre un
fluide et un corps autre apparaït. On ne peut pas toujours l’exprimer explicitement, mais
dans le cas d’une interface invariante selon y sur une longueur L selon cet axe, la tension de
surface vaut alors F = γL dans la direction de diminution de la surface de l’interface, avec γ
le coefficient de tension superficielle associé à l’interface.

Exemple : surface de l’eau non perturbée

On considère une cuve de longueur a et de largeur L, dans laquelle on a mis de l’eau :

L

Si l’on prend un coupe de longueur dx :

dx
F⃗g F⃗d

F⃗g = −γLu⃗x et F⃗d = γLu⃗x. Par ailleurs la résultante des forces de pression s’annule par symétrie,
la coupe d’eau est donc à l’équilibre mécanique : l’interface plate est une situation stable.

Revenons à notre problème. La masse volumique de l’eau ρ est une constante, ainsi que la
tension superficielle de l’eau γ. La constante représentant l’intensité de l’accélération de la
pesanteur est notée g. La pression atmosphérique, notée P0, est supposée toujours uniforme.
Dans la suite, on cherche à déterminer la forme de la surface de l’eau. L’unité de la tension
superficielle est aussi bien le Jm−2 que le Nm.
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1. On considère un bloc d’eau dont la découpe est représentée en grisé sur la figure 2(a).
Sa coupe transversale dans le plan xz est précisée par une zone hachurée plus sombre
délimitée par des pointillés sur la figure 2(b). Soient z1 et z2 les cotes respectives des
bords gauche et droit de la surface de ce bloc, à la surface de l’eau (entre le bloc
d’eau et l’air). Un peu d’hydrostatique et un calcul d’intégrale permet de montrer que la
composante horizontale (selon l’axe x) fx de la force linéique (i.e. par unité de longueur
le long de l’axe y) exercée sur le bloc en raison de la pression vaut :

fx =
1

2
ρg(z22 − z21)

Figure 2 – Forme du bloc d’eau sous la surface de l’eau. (a) Vue tridimensionnelle et (b) vue
en coupe.

L’hydrostatique vous permettra également d’expliquer pourquoi P0 n’intervient pas dans
ce résultat. Déterminer l’expression de fx en fonction γ, θ1, et θ2.

2. Montrer qu’en un point (x, z) quelconque de la surface de l’eau :

1

2

(z
l

)a
+ cos(θ(x)) = constante

Déterminer la valeur de l’exposant a et exprimer la constante l en fonction de γ et ρ. On
note que cette équation est valable que la plaque soit hydorphile ou hydrophobe.

3. On suppose que les variations de la hauteur de l’eau sont faibles, i.e. |z′(x)| ≪ 1 (les angles
des figures 1 et 2 sont exagérés pour une meilleure lisibilité et ne satisfont donc pas
cette condition). En déduire l’équation différentielle satisfaite par z(x). Résoudre cette
équation différentielle et déterminer z(x) pour x ⩾ 0 en fonction de tan θ0 et l.

3.2 Interaction entre deux tiges

Des tiges identiques A et B, constituées du même matériau, flottent à la surface de l’eau
en étant disposées parallèlement et à la même distance de l’axe y (figure 3).
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Figure 3 – Deux tiges A et B flottant à la surface de l’eau.

1. Comme le montre la figure 4, on définit les cotes za et zb comme les positions des
contacts entre la tige B et la surface de l’eau, ainsi que les angles θa et θb.

Figure 4 – Vue en coupe verticale des deux tiges flottant à la surface de l’eau.

Soit xa l’abscisse du point de contact de la tige B avec la surface de l’eau situé le plus
à gauche. En utilisant l’équation différentielle obtenue en 3, exprimer la cote z0 de la
surface de l’eau à mi-distance entre les tiges A et B en fonction de xa et za ; il est possible
d’utiliser la constante l introduite en 2.

Préparation aux olympiades – version 2025-26 – contributeur : Mathurin Rouan
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